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Abstract. We develop a new efficient method for calculating the shape-truncation 
functions of arbitrary Voronoi polyhedra by combininganalytical and numerical tech- 
niques. Applications are presented forceb of cubicsymmetry ae well as for hexagonal 
dose-padied (HCP) atomic polyhedra with different values of the c / a  ratio. We also 
discuss au efficient way for perfomling three-dinemional integrations in electronic- 
stmcture calalculatiom (e.g. solve Poisson’s equation) using shape functions. 

1. Introduction 

In realistic electronic-structure calculations employing cellular methods considerable 
effort has been made recently for evaluating three-dimensional multi-centre integrals 
without imposing any shape approximation on the potential and charge density [l-3]. 
Indeed in a self-consistent scheme, within the density functional theory for instance, an 
effective potential must be constructed from the local charge density at each iteration. 
This task involves three-dimensional integrations of a site-centred expanded charge 
density within the, in general non-periodic, whole system. The same problem also 
occurs in total-energy calculations, where it is important to avoid shape approximation 
on the potential and charge density in order to obtain the desired accuracy [4, 51. 

One approach to the multi-centre integration problem initially involves partitioning 
of space among the atoms where a certain portion of the space in the shape of a 
polyhedron is attached to each atom. These polyhedra are variously known as Dirichlet 
regions, Voronoi polyhedra, Wigner-Seitz cells etc. We will use here the name ‘Voronoi 
polyhedra’. In mathematical language we say that a point r belongs to the Voronoi 
cell V,, of atom n located at  position n, if it is closer to n than to any other atom m 
of the system: 

TfV”  el r - n, 1<1 T - R, I vm. (1) 

Thus, a Voronoi polyhedron is defined by the closest planes that are perpendicular 
bisectors of the lines joining the central atom and its neighbours. Numerous algorithms 
for the automatic construction of these polyhedra exist in the literature [6-lo]. The 
definition of Voronoi cells and their geometrical construction is not restricted to equal 
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atomic volumes, but can be easily generalized [lo]. The generalization allows for a 
realistic partitioning of the space among atoms of difTerent size, in the case of lattice 
relaxalion, interstitial impurities, interfaces etc. 

Several methods have been suggested in the literature for performing the three- 
dimensional integrals over the Voronoi polyhedra. A straightforward numerical inte- 
gration using rapidly convergent Gaussian product formulae has been developed to a 
high degree of sophistication in the works of Boerrigter el  al [l] and of Averill and 
Painter [3]. An interesting scheme has been proposed by Becke [2]. In his method 
the system is not divided into conventional discrete cells, but into fuzzy, overlapping, 
analytically continuous cells. This is done in the following way. Integration within 
a Voronoi cell can be performed by multiplying the integrand with a unit step func- 
tion, @(a(+) - 7 )  where a(?) is the distance of t.he cell surface from the origin, in 
the direction defined by the solid angle F, The so-called shape function, which is 
equal to one for points T lying inside the Voronoi polyhedron and vanishes outside of 
it, is replaced with an appropriate continuous analogue, resembling, e.g., the finite- 
temperature Fermi function. 

We should also mention here the methods originating from the work of Ellis 1111 
and Ellis and Painter [I21 on the use of Diophantine integration [13, 141 in solid-state 
and molecular electronic-structure calculations. This integration method, however, as 
shown by Boerrigter et a1 [l] ,  behaves poorly as the number of mesh points increases 
and is therefore iinsiiitable for high accuracy integrations. Monte-Carlo integration 
techniques also exhibit a similar slow convergence [15, 161 and are not recommended 
for routine use in the evaluation of the numerous integrals occurring in electronic- 
structure calculations. 

It has been suggested several times that the computation of these integrals within 
Voronoi cells can be simplified by fitting the potential and/or charge density with 
Gaussians [17-241, plane waves [25] or Hankel functions [!%I and by performing the 
required integrals with the fitting functions numerically. Here, also the use of a nu- 
merical technique for three-dimensional integration is involved. 

In many electronic-structure calculations the charge densities and potentials are 
given in an angular-momentum representation. It is then convenient to describe the 
shape of the Voronoi cells by a Neaviside step function, @(U(+)  - r) being equal to one 
in the cell and zero outside. The three-dimensional multi-centre integration is then for- 
mally reduced to a sum of one-dimensional radial integrals of the angular-momentum 
components of the integrands, multiplied with the appropriate Gaunt coefficients [27, 
281. For that, one needs to calculate the angular-momentum components of the shape 
function @(U(?)  - r) .  Once evaluated for a given cell shape, they can be used when 
truncation by that boundary is needed. Since they scale with the size of the cell 
they need only be calculated once for each geometry. The shape functions have been 
introduced by Andersen and Woolley [29], who also described a technique for their 
analytic evaluation when the cell boundary is a set of planes. This results in com- 
plicated analytical expressions, and numerical calculations seem to he more efficient. 
Morgan [27] has computed the components up to I = 8 for FCC and BCC cells by 
numerical integration using a direct product of two Gaussian quadratures. In the 
same paper unpublished results of a computation of these function by Janak, using 
the Gilat-Raubenheimer method, are presented. The use of Brillouin zone integm 
tion techniques has  also been suggested by Christensen [30]. Recently, Stefanou et al 
['28] proposed a new method for the calculation of these functions for cubic and other 
high symmetry cells by combining analytical and numerical techniques. In this paper 
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we develop a generalization of this method to calculate shape functions for arbitrary 
Voronoi polyhedra. 

c 
Figure 1. Division of a rotated pyramidinto elementary tetrahedra. 

2. Calculational method 

We expand the shape function in a real-spherical-harmonic basis: 

o ( o ( ~ )  - r) = CO,,,,(T)Y,,,,(~). 
1,m 

The angular-momentum components O,, , (P)  are given by 

where the shape function in the integral truncates the integration to those angles for 
which the surface of the sphere (0, T) lies inside the Voronoi polyhedron. We divide 
the polyhedron into N pyramids with the centre of the polyhedron as common vertex 
and its faces as bases, and rotate each pyramid through the Euler angles a,, p',,~, so 
that its base becomes perpendicular to the z-axis. Such a rotated pyramid is shown 
in figure 1. Then, equation (3) takes the form: 

where 'D,,, ( 9  transforms real spherical harmonics under three-dimensional rotations 
[31] and Q, denotes the solid angle integration boundaries of the nth rotated pyramid. 
The base of each rotated pyramid is a convex polygon. I t  is divided into triangles with 
vertices being those of the polygon and with a common vertex being the intersection 
of the base with the z-axis. This point may lie inside or outside the polygon. In the 
latter case the polygon can also be obtained as a superposition of such triangles, if the 
contribution of the triangles lying entirely outside are subtracted. In this way we define 
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a subdivision of the nth pyramid into T(n)  elementary tetrahedra and equation (4)  is 
written: 

N Stefanou and R Zeller 

where S, = -1 if the entire tetrahedron t lies outside the polyhedron and S, = 1 
otherwise. The efficiency and accnracy of our method relies on the fact that we first 
analytically integrate over I9 and only the remaining +-integration is done numerically, 
for instance by Simpson's method. As detailed in [28], this means we have to evaluate 

I ( p ,  q ,  19) = / d19 sinP I9 cosq 9 (6 )  

for which we have given recurrence relations [28]. Recent closed form expressions for 
I ( p , q , 1 9 )  have also been obtained by Szalay [32]. 

For a given argument r the integral in equation (5) is non-vanishing only within 
certain limits for the Up- and pintegration, which are determined by the surface part 
of the sphere (0, r) that lies inside the elementary tetrahedron. These 9- and +-limits 
are functions of the radius r, which at  some critical points can have discontinuous 
derivatives due to the geometry of the Voronoi polyhedron. Critical points occur 
either when the sphere (0,r) passes through a vertex of the polyhedron or when it is 
tangent to an edge or to a face. At these points the derivatives of the shape function 
components are also, in principle, discontinuous. Thus, integrals involving Olm(r) 
must be calculated with a suitable radial mesh in order to avoid numerical errors. 
Such a radial mesh may be constructed by dividing the mesh points into different 
intervals within which the derivative of the shape function remains continuous. 

For each elementary tetrahedron, the 29- and 9-angle limits can be determined by 
simple geometrical considerations. In general one has to consider a sum of P integrals 
over those parts of the spherical angle Q, which correspond to the different parts of the 
sphere (0, r) that lie inside the elementary tetrahedron. Let OHAB he an elementary 
tetrahedron of height 011 = ro with O A  = (rA,19A,~A), OB = (rB,ffB,pB), oriented 
so that pA < pB, and OD = (rD,t9D,pD) be perpendicular to the edge (AB), as 
shown in figure 1. The 9- and pangle  limits are then defined as follows. 

(i) For T < To, P = 1 and 
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where 

subject to the conditions 

v;, = max(rp*'rp(;)) 

V(L, (LJ 
K = min(rp,,rp K ). 

are always restricted within the interval (pA, pB). 

3. Applicat ions 

We first applied our method to calculate the components of the shape functions up 
to 1 = 16 for the Wigner-Seitz cells of simple, FCC and BCC lattices. Our results 
are identical to those obtained by Stefanou el a[ [28] .  However, the generality of 
the present algorithm, which coutrary to the previous one [28] does not apply group 
theory, implies an increase by a factor of approximately eight in computer time. Here 
it is interesting to note that we calculate the shape-function components which should 
be equal to zero by symmetry to be about This indicates the accuracy of our 
method. 

The efficiency and generality of our algorithm is better shown by considering 
Voronoi cells of lower symmetry. For this reason we calculated the shape functions up 
to I = 6 for the atomic polyhedron of HCP structures with different values of the c / a  
ratio: c / a  = 1, 1.633, 2 .  The geometry of such a Wigner-Seitz atomic polyhedron is 
determined by the Voronoi construction [6-IO]. The Voronoi cell, thus defined around 
each atom, has a volume equal to (&/4)aZc and is invariant under the rotations of 
the D, point symmetry group [33]. The non-zero angular-momentum components of 
the shape functions are shown in figure 2.  

The use of shape-truncation functions is very helpful in obtaining efficient com- 
puter codes for electronic-structure calculations, where three-dimensional multi-centre 
integration is involved. A useful application is, for example, the solution of Poisson's 
equation. Let us consider the electrostatic potential V ( T )  created by a charge distri- 
bution of density n(r), localized within a Wigner-Seits cell 0: 

in Rydberg atomic units. The angular-momentum Components of the potential for 
distances larger than the radius of the circumscribed sphere R,  are given by 
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4., I 4.I 

-1. 
I (61 

OA 0.5 0.6 0.7 r,,a 0.8 

Figure 2. Components 0,,(v) of the shape 
functionforHCP atomiccells: ( f , m )  = (O,O),- 

(I,ni) = (4,0),- , . -  . --; (I,m) = (5,3), -. . -; 
(1," = (6 3 1  0 )  . ... - .. . -. I and ( 4 4  = (6 ,6) ,  

( 6 )  elm = 1. ( b )  ./a = 1.633. (c)  

-; (f,m) = ( 2 . 0 ) ,  - --; (I,m) = (3,3), - . -; 

cJa = 2. 

Similar formulae, valid for 0 4 r 4 R,, and for R,, 4 r < R,, R,, being the 
radius of the muffin-tin sphere, are given in [28]. 

As shown there the 1-convergence of the shape functions is slow. However, this 
does not seem to be a problem i n  electronic-structure calculations where, in any case, 
a restricted I-basis is used for the expansion of wavefunctions, charge densities, po- 
tentials etc. Indeed, the angular-momentum cut-offs l, and In in the expansions of 
the potential and the charge density, respectively, determine a cut-off I ,  for the shape 
functions through the Gaunt-coefficients. Selection rules for these coefficients [31] 
impose the condition that I ,  4 I , , +  I , .  

In electronic-structure calculations the charge density is a smooth and slowly vary- 
ing function in the interstitial region and the computational effort to solve Poisson's 
equation can be reduced by fitting the charge density components, as has been sug- 
gested by many workers [4, 5, 17, 18, 261. For this fitting, one can use a relatively 
restricted basis of fitting functions f ( ' ) ( r ) :  

(16) ( i )  ( i )  nl,n(.) = Cbl,,,f (r) RMT < r 4 %. 

Constrained least-squaresfit methods subject to functional continuity or (and) charge- 
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conservation constraints can also be applied. This leads to integrals of the type 

which are smooth functions of T and, for a specific choice off('), depend only on the 
geometry of the cell. Thus, they must be calculated only once and can be stored for 
further use when solving a problem with this geometry. 

4. Couclusioii 

We have developed a new accurate method for calculating the shape-truncation func- 
tion of an arbitrary Voronoi polyhedron. Its angular-momentum components are cal- 
culated by an effective solid-angle integration within all the appropriate elementary 
tetrahedra into which the polyhedron is divided. The &integral is evaluated analyti- 
cally, so that just a onedimensional pinkegration must be performed numerically. 

We applied the method to cells of cubic symmetry as well as to HCP atomic poly- 
hedra with c/a ratios: 1, 1.633, 2. Our results for cubic cells are identical to those 
obtained by our previous method [%I. Both methods combine high accuracy with nu- 
merical efficiency. The present one needs somewhat longer computer time, but works 
easily for arbitrary Voronoi polyhedra. I t  is recommended for low symmetries where 
the effective solid-angle integration limits needed i n  our previous method [ZS] are hard 
to establish explicitly. 

The shape of any atomic polyhedron is described fully by the angular-momentum 
components of the corresponding truncation function. Thus, volume integration 
within a cell or spatial truncatioii of a function by the boundary planes of a polyhe- 
dron can be expressed in terms of these shape-truncation functions. Their use is very 
helpful in obtaining eRcient computer codes for solid-state and molecular electronic- 
structure calculations, where three-dimensional multi-centre integrations (e.g. solution 
of Poisson's equation) are required. 
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